

IWA Water and Development Congress & Exhibition 2025

8-12 December 2025 | Bangkok – Thailand

Evaluating Methane Emissions and Exploring Potential Methane Capturing mechanisms across the Sanitation Service Chain in India

Aasim Mansuri on behalf of CWAS team

Center Head – Strategy

Center for Water and Sanitation, CRDF, CEPT University, India

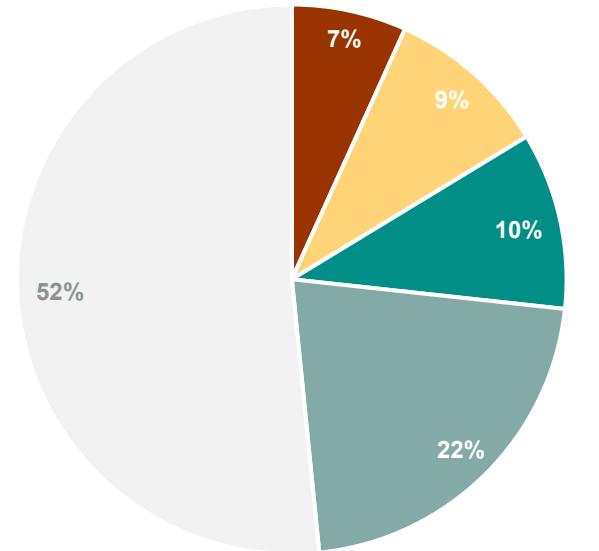
Prof. Meera Mehta, Prof. Dinesh Mehta, Dhruv Bhavsar, Jigisha Jaiswal, Aditi Dwivedi, Karan Patil

Sanitation sector is 4th highest methane emitter to global methane emissions. . .

National and International agenda **focus on methane mitigation**

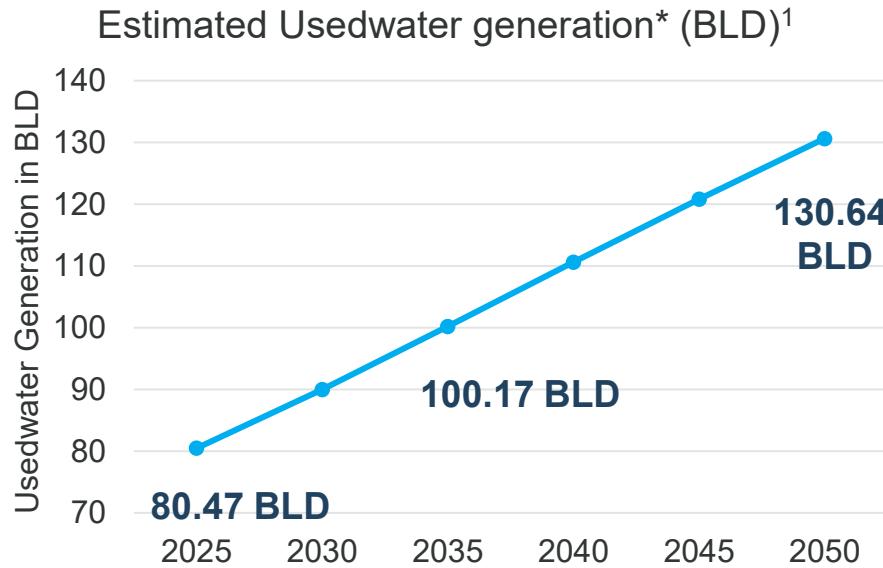
International agenda

- **Global Methane Pledge** focus on **reducing methane emission by at least 30 %** from level in 2020 till 2030.
- Using methane as a **resource/ source** for **clean energy**
- **Linkages** between **SDG 6 – SDG 7 – SDG 13**



National agenda

- **SBM 2.0 and AMRUT 2.0** focus on **improving overall sanitation condition** in India across the urban areas with **focus on circularity**
- National level programs like **SATAT** and **GobarDHAN** focus on making **clean energy from waste**.



Global CH4 Emission in MMTCO₂ eq. 1990 - 2025

Source: <https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases> extracted from <https://www.globalmethane.org/methane-emissions-data.aspx#about>

Methane capture potential of 7 Mt CO2 eq annually from 50 BLD of STPs in India by 2026 . . .

Current operational treatment facility capacity
– 31.4 BLD (40 % of total usedwater generated)²

Source: 1. NITI Aayog. (2023). Revised strategy paper on reuse of treated Usedwater in peri-urban agriculture in India. National Institution for Transforming India. https://www.niti.gov.in/sites/default/files/2023-08/Revised_Strategy_Paper_on_Reuse_of_Treated_Usedwater_in_peri-urban_agriculture_in_India.pdf; 2. <https://static.pib.gov.in/WriteReadData/specificevents/documents/2025/nov/doc20251119698701.pdf>; 3. <https://www.pib.gov.in/PressReleaselframePage.aspx?PRID=1986271®=3&lang=2#~text=Under%20Namami%20Gange%20Programme%2C%20in.state%20and%20other%20government%20agencies>; 4. <https://www.pib.gov.in/PressReleaselframePage.aspx?PRID=2041571®=3&lang=2>

Planned capacities by year 2026

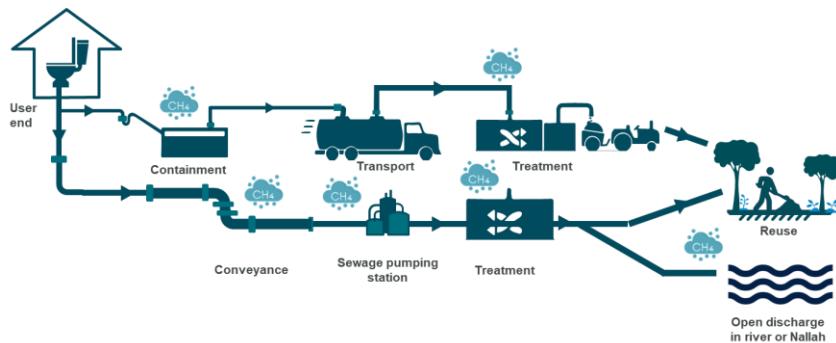
7 BLD

Namami Gange
Programme by 2026³

+

5.7 BLD

Additional capacity under
AMRUT 2.0⁴


+

4.9 BLD

Additional capacity under
SBM 2.0

Accurate estimation across sanitation service chain : To understand methane recovery potential . . .

IPCC as a base for emission estimation

- **Provides emission factors** for estimation of emissions across the sanitation service chain
- **Three tier quantification** methodology for emissions estimate formed and developed based on existing literature.

Emission factors for India

Septic tanks	Sewer network	Sewage treatment Plant	Open Discharge
0.24 – 0.42 kg CH ₄ /kg BOD	0.018 – 0.180 kg CH ₄ /kg BOD	0.018 – 0.6 kg CH ₄ /kg BOD	0.06 – 0.24 kg CH ₄ /kg BOD

Tier 1

National level

Tier 2

Sub National level

Tier 3

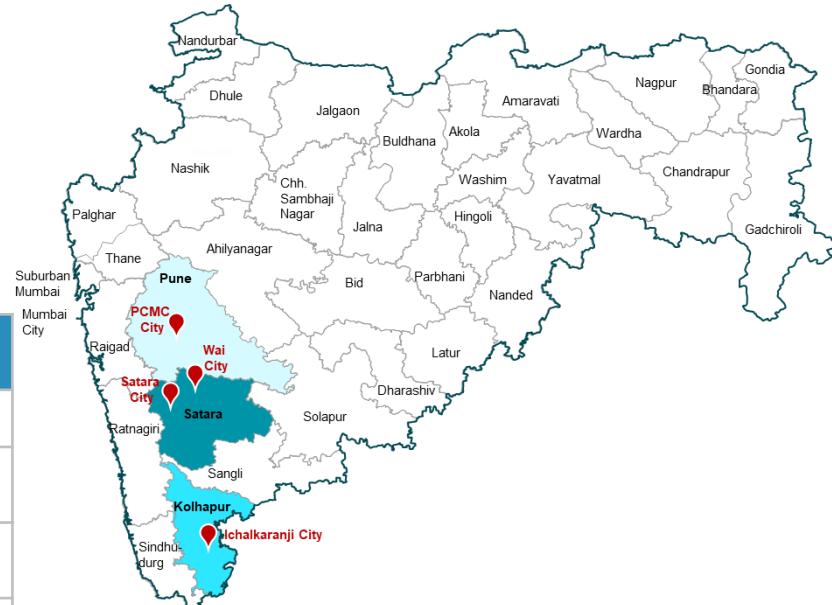
Local level

Most countries are dependent on **tier 1 and tier 2 level emission factors** for emission estimation

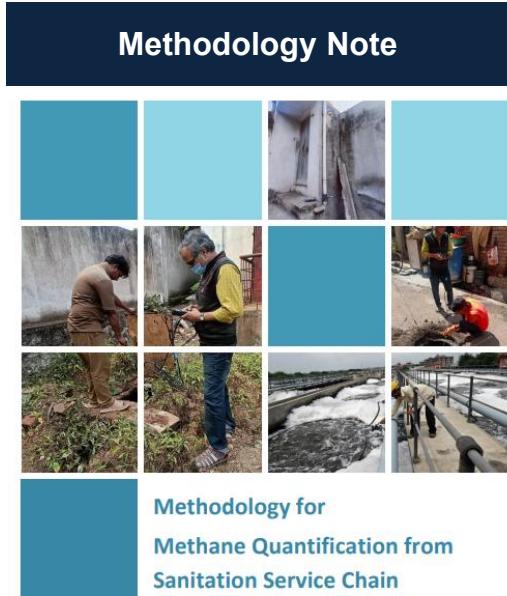
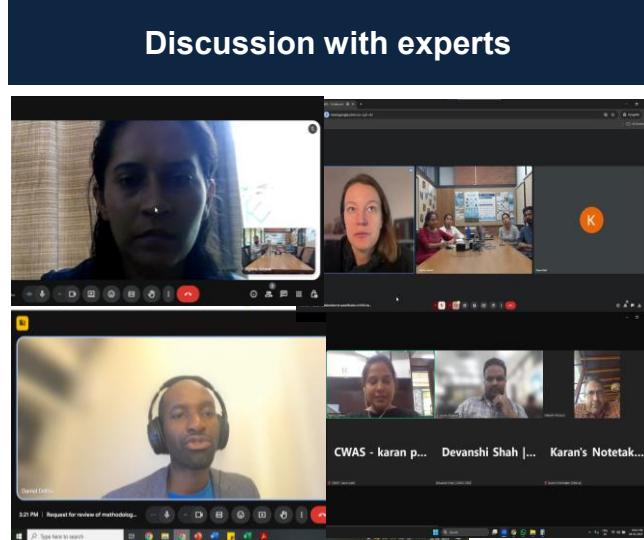
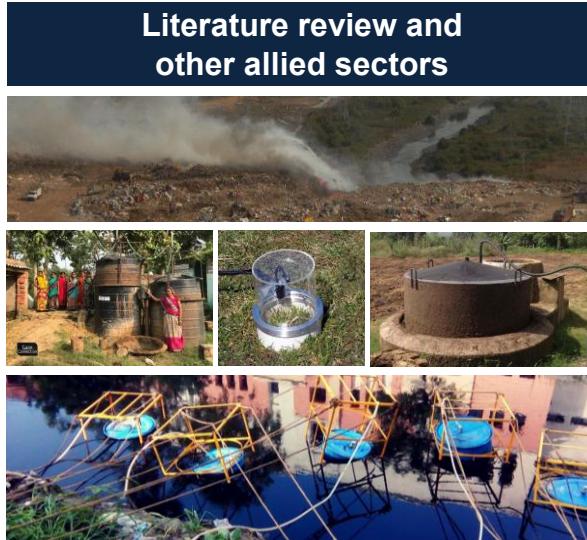
Emission factor studies mostly dominated by global north literatures and currently few global south countries are contributing to enhance the methodology through carrying out **on field quantification studies at local level**.

Studies required for Indian cities at local level to assist in understanding the methane potential for resource recovery and capture

Cities identified in Maharashtra to understand local level emissions with varying sanitation systems . . .


Selection of cities based on:

- Large town to small town
- Sanitation system coverage – (onsite, offsite, combine system)
- Type of sanitation treatment facilities – STP - (anaerobic or aerobic)
- Different climatic conditions




Sr. No.	Parameter	Pimpri Chinchwad (PCMC)	Ichalkaranji	Satara	Wai
1	Population	2.8 million	0.4 million	0.3 million	50 K
3	Area (Sq.Km.)	181	29.9	26.4	3.54
4	Sanitation system	95 % Sewered and 5 % onsite	Sewered (60 %) and onsite (40 %)	Fully onsite	Fully onsite
5	Sanitation treatment facility type	STP: SBR, ASP, extended aeration, and Biotower	STP: SBR (Sequential batch reactor)	FSTP (50 KLD)	FSTP (70 KLD)

Partially Sewered

Non-Sewered

Developed a methodology for Methane quantification at local level. . .

Methodology for
Methane Quantification from
Sanitation Service Chain

August 2025

- Literature review to **understand current global practices** for methane quantification across different sanitation system
- Review focused on **methodologies, equipment used**, and **challenges** encountered in on-field quantification

- **Academic** institutions
- **Sector partners** and researchers
- **Professionals** working in remote sensing domain

CEPT
UNIVERSITY

Sampling process followed to understand local level methane emissions . . .

On site Containment	Sewer Network	Pumping station and Sewage treatment plant	Discharge
<ul style="list-style-type: none">Samples Consideration of 17 samples across 2 different cities with different characteristicsSampling interval Continuous monitoring at a 2-hour interval for 8-hour a day was carried out during three seasonQuality testing: Lab based sample test for effluent and sludge samples are carried out on same interval	<ul style="list-style-type: none">Samples Maintenance holes will be identified across 2 cities.Sampling Interval continuous monitoring will be carried for 24 hour across three seasons for day.Quality testing : Lab based sample test for effluent and sludge samples are carried out on same interval	<ul style="list-style-type: none">Samples 3 STPs with different technologies are consider across 2 cities.Sampling Interval Continuous monitoring at interval of 2 hour by installing floating flux chamber at different STP units for 8 hours over peak and nonpeak hours across three seasons for dayQuality testing Sampling collection for lab-based testing of effluent and sludge sample are carried out on same interval	<ul style="list-style-type: none">Samples 5 discharge locations of treated and untreated usedwater will be selected.Sampling Interval Continuous monitoring using open bottom flux chamber at 3 location (upstream, at discharge location and downstream)Quality testing Sampling collection for lab-based testing of effluent sample are carried out seasonally.

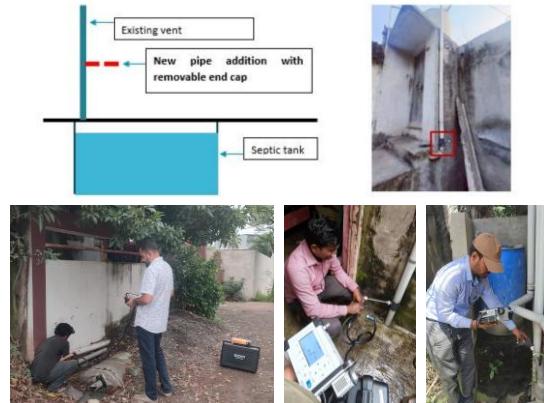
Lab tests of samples are done to **establish empirical relationship** between lab results and **emissions** that are recorded

As on date : activities as per this approach have been completed at containment systems and STPs

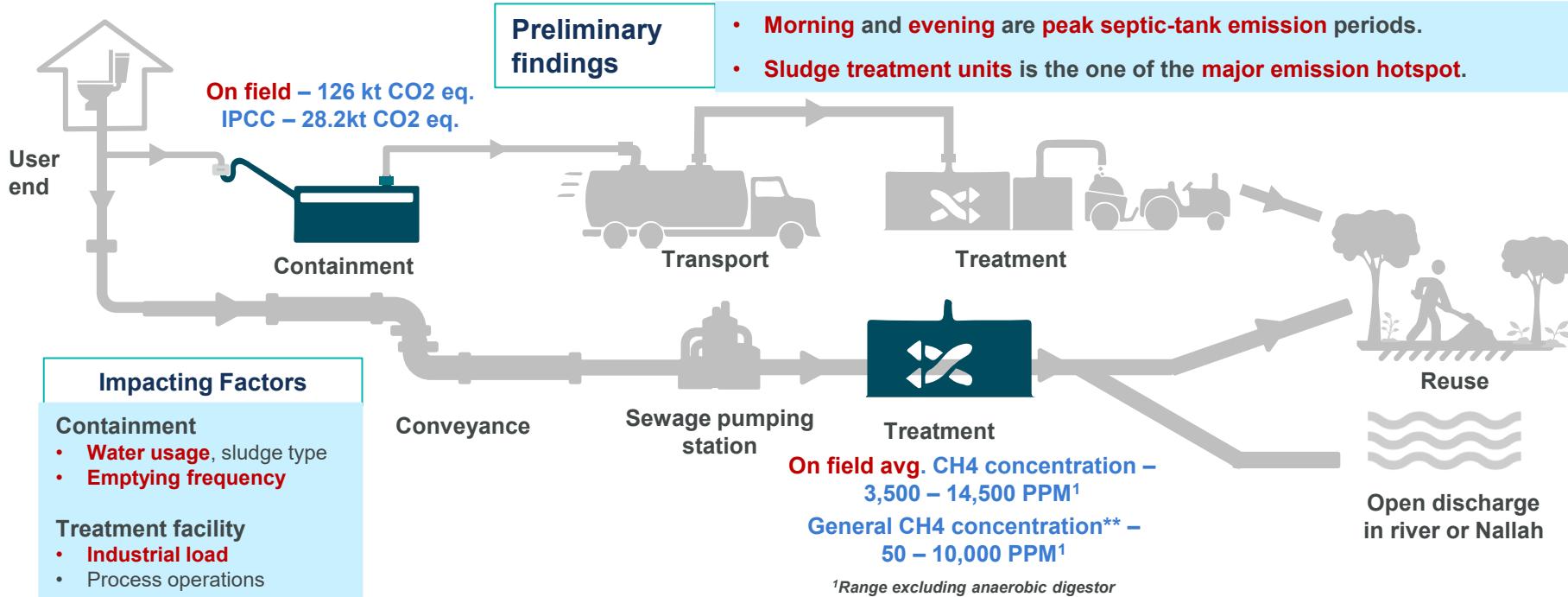
Exploring different approaches for on field quantification . . .

Flux chamber			
Septic tank	Sewer network & Pumping station	STPs	Discharge

Built an **in-house open bottom flux chamber** for collecting flux readings at 4 septic tanks.

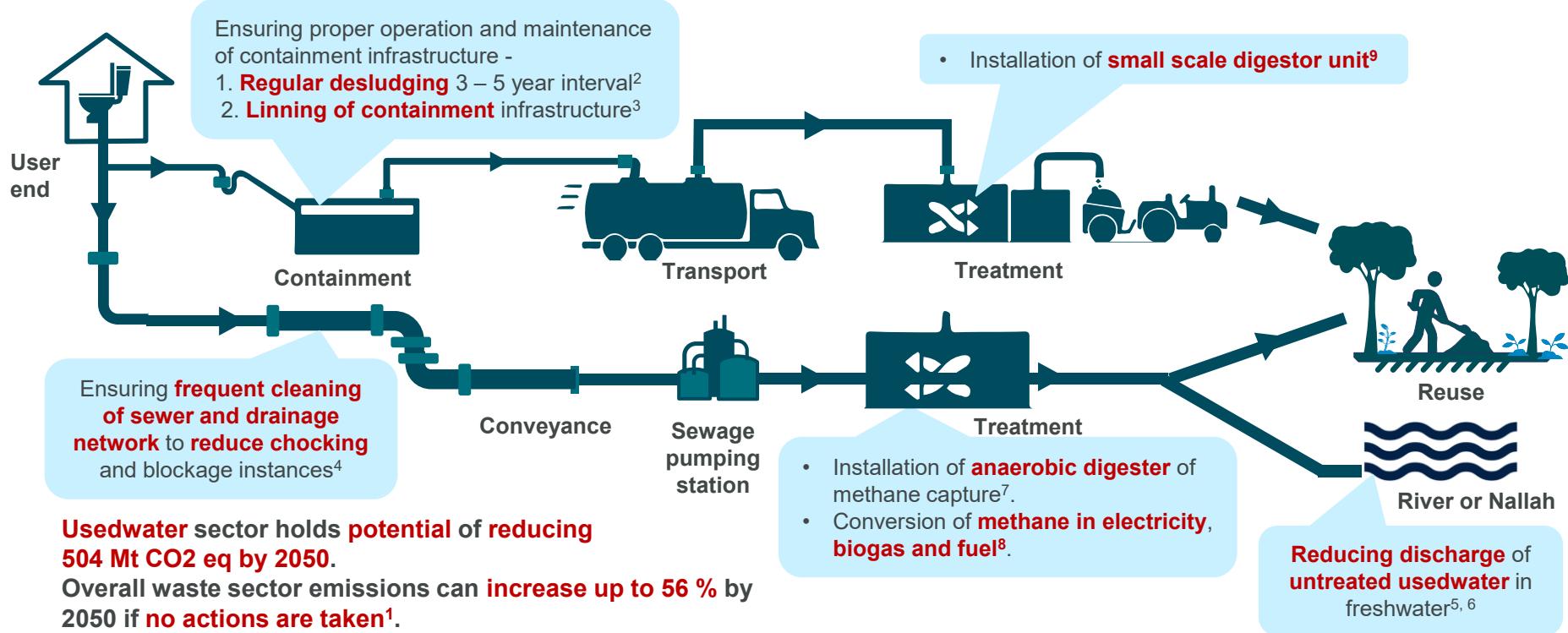

IOT based sensor	
Septic tank	Sewer network & Pumping station

IOT based sensor solutions for estimating the methane concentration across sanitation service chain.



Stack based approach
Septic tank

Methane concentration in stacks carried out at 17 septic tanks at 2 hours interval.



Methane emission varies across sanitation service chain, with higher emissions at treatment facilities . . .

On field methane emissions from septic tanks are 4x compared to tier 2 emission estimates for Ichalkaranji city*

Existing efforts being undertaken to mitigate methane emissions / resource recovery across sanitation service chain . . .

Usedwater sector holds potential of reducing 504 Mt CO₂ eq by 2050.

Overall waste sector emissions can increase up to 56 % by 2050 if no actions are taken¹.

Source:1. United Nations Environment Programme (2025). *Global Methane Status Report*. Paris. <https://www.unep.org/resources/report/global-methane-status-report-2025>; 2. *Greenhouse Gas Emissions from Blackwater Septic Systems*; 3. *Greenhouse gas emissions from different containment system in Dhulikhel Municipality in Nepal*; 4. *Reducing methane emissions from gravity sewer pipelines by ultrasonication*; 5. *Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater*; 6. *Wastewater-effluent discharge and incomplete denitrification drive riverine CO₂, CH₄ and N₂O emissions*; 7. *Reduction of energy consumption and greenhouse gas emissions in wastewater treatment plant: A case study of utilizing anaerobic sludge digestion*; 8. *Turning Human Waste into Renewable Energy: Scope and Options for India*; 9. *Omission of emissions: the untapped potential of sanitation for climate mitigation in Nepal*

Key Takeaways : To do tackle methane emissions and convert into resource . . .

cwas@cept.ac.in
aasim.mansuri@cept.ac.in

cwas.org.in

About us

The Center for Water and Sanitation (CWAS) is a part of CEPT Research and Development Foundation (CRDF) at CEPT University. CWAS undertakes action-research, implementation support, capacity building and advocacy in the field of urban water and sanitation. Acting as a thought catalyst and facilitator, CWAS works closely with all levels of governments - national, state and local to support them in delivering water and sanitation services in an efficient, effective and equitable manner.

cwas.org.in
pas.org.in

cwas@cept.ac.in
tiny.cc/pasenews

CEPT_CWAS

cwas.cept

cwas.cept

cwas.cept